Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 283
Filter
1.
J Microbiol Biotechnol ; 34(5): 1-10, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38719776

ABSTRACT

The antioxidant capacity and protective effect of peptides from protein hydrolysate of Cordyceps militaris cultivated with tussah pupa (ECPs) on H2O2-injured HepG2 cells were studied. Results indicated ECP1 (<3 kDa) presented the strongest antioxidant activity compared with other molecular weight peptides. Pretreated with ECPs observably enhanced survival rates and reduced apoptosis rates of HepG2 cells. ECPs treatment decreased the ROS level, MDA content and increased CAT and GSH-Px activities of HepG2 cells. Besides, the morphologies of natural peptides from C. militaris cultivated with tussah pupa (NCP1) and ECP1 were observed by scanning electron microscopy (SEM). Characterization results suggested the structure of NCP1 was changed by enzymatic hydrolysis treatment. Most of hydrophobic and acidic amino acids contents (ACC) in ECP1 were also observably improved by enzymatic hydrolysis. In conclusion, low molecular weight peptides had potential value in the development of cosmetics and health food.

2.
ACS Nano ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727530

ABSTRACT

As a second-order nonlinear optical phenomenon, the bulk photovoltaic (BPV) effect is expected to break through the Shockley-Queisser limit of thermodynamic photoelectron conversion and improve the energy conversion efficiency of photovoltaic cells. Here, we have successfully induced a strong flexo-photovoltaic (FPV) effect, a form of BPV effect, in strained violet phosphorene nanosheets (VPNS) by utilizing strain engineering at the h-BN nanoedge, which was first observed in nontransition metal dichalcogenide (TMD) systems. This BPV effect was found to originate from the disruption of inversion symmetry induced by uniaxial strain applied to VPNS at the h-BN nanoedge. We have revealed the intricate relationship between the bulk photovoltaic effect and strain gradients in VPNS through thickness-dependent photovoltaic response experiments. A bulk photovoltaic coefficient of up to 1.3 × 10-3 V-1 and a polarization extinction ratio of 21.6 have been achieved by systematically optimizing the height of the h-BN nanoedge and the thickness of VPNS, surpassing those of reported TMD materials (typically less than 3). Our results have revealed the fundamental relationship between the FPV effect and the strain gradients in low-dimensional materials and inspired further exploration of optoelectronic phenomena in strain-gradient engineered materials.

3.
Clin Interv Aging ; 19: 639-654, 2024.
Article in English | MEDLINE | ID: mdl-38706634

ABSTRACT

Background: The triglyceride-glucose (TYG) index is a novel and reliable marker reflecting insulin resistance. Its predictive ability for cardiovascular disease onset and prognosis has been confirmed. However, for advanced chronic heart failure (acHF) patients, the prognostic value of TYG is challenged due to the often accompanying renal dysfunction (RD). Therefore, this study focuses on patients with aHF accompanied by RD to investigate the predictive value of the TYG index for their prognosis. Methods and Results: 717 acHF with RD patients were included. The acHF diagnosis was based on the 2021 ESC criteria for acHF. RD was defined as the eGFR < 90 mL/(min/1.73 m2). Patients were divided into two groups based on their TYG index values. The primary endpoint was major adverse cardiovascular events (MACEs), and the secondary endpoints is all-cause mortality (ACM). The follow-up duration was 21.58 (17.98-25.39) months. The optimal cutoff values for predicting MACEs and ACM were determined using ROC curves. Hazard factors for MACEs and ACM were revealed through univariate and multivariate COX regression analyses. According to the univariate COX regression analysis, high TyG index was identified as a risk factor for MACEs (hazard ratio = 5.198; 95% confidence interval [CI], 3.702-7.298; P < 0.001) and ACM (hazard ratio = 4.461; 95% CI, 2.962-6.718; P < 0.001). The multivariate COX regression analysis showed that patients in the high TyG group experienced 440.2% MACEs risk increase (95% CI, 3.771-7.739; P < 0.001) and 406.2% ACM risk increase (95% CI, 3.268-7.839; P < 0.001). Kaplan-Meier survival analysis revealed that patients with high TyG index levels had an elevated risk of experiencing MACEs and ACM within 30 months. Conclusion: This study found that patients with high TYG index had an increased risk of MACEs and ACM, and the TYG index can serve as an independent predictor for prognosis.


Subject(s)
Blood Glucose , Heart Failure , Triglycerides , Humans , Male , Female , Heart Failure/blood , Heart Failure/mortality , Aged , Triglycerides/blood , Prognosis , Middle Aged , Blood Glucose/analysis , Risk Factors , Biomarkers/blood , ROC Curve , Retrospective Studies , Insulin Resistance , Proportional Hazards Models , Glomerular Filtration Rate , Chronic Disease , Predictive Value of Tests
4.
Sci Data ; 11(1): 488, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734729

ABSTRACT

Domesticated herbivores are an important agricultural resource that play a critical role in global food security, particularly as they can adapt to varied environments, including marginal lands. An understanding of the molecular basis of their biology would contribute to better management and sustainable production. Thus, we conducted transcriptome sequencing of 100 to 105 tissues from two females of each of seven species of herbivore (cattle, sheep, goats, sika deer, horses, donkeys, and rabbits) including two breeds of sheep. The quality of raw and trimmed reads was assessed in terms of base quality, GC content, duplication sequence rate, overrepresented k-mers, and quality score distribution with FastQC. The high-quality filtered RNA-seq raw reads were deposited in a public database which provides approximately 54 billion high-quality paired-end sequencing reads in total, with an average mapping rate of ~93.92%. Transcriptome databases represent valuable resources that can be used to study patterns of gene expression, and pathways that are related to key biological processes, including important economic traits in herbivores.


Subject(s)
Herbivory , Transcriptome , Animals , Cattle/genetics , Female , Rabbits/genetics , Databases, Genetic , Deer/genetics , Equidae/genetics , Goats/genetics , Horses/genetics , Sheep/genetics
5.
ACS Appl Mater Interfaces ; 16(15): 19214-19224, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38581080

ABSTRACT

Near-infrared (NIR) polarization photodetectors with two-dimensional (2D) semiconductors and their van der Waals (vdW) heterostructures have presented great impact for the development of a wide range of technologies, such as in the optoelectronics and communication fields. Nevertheless, the lack of a photogenerated charge carrier at the device's interface leads to a poor charge carrier collection efficiency and a low linear dichroism ratio, hindering the achievement of high-performance optoelectronic devices with multifunctionalities. Herein, we present a type-II violet phosphorus (VP)/InSe vdW heterostructure that is predicted via density functional theory calculation and confirmed by Kelvin probe force microscopy. Benefiting from the type-II band alignment, the VP/InSe vdW heterostructure-based photodetector achieves excellent photodetection performance such as a responsivity (R) of 182.8 A/W, a detectivity (D*) of 7.86 × 1012 Jones, and an external quantum efficiency (EQE) of 11,939% under a 1064 nm photon excitation. Furthermore, the photodetection performance can be enhanced by manipulating the device geometry by inserting a few layers of graphene between the VP and InSe (VP/Gr/InSe). Remarkably, the VP/Gr/InSe vdW heterostructure shows a competitive polarization sensitivity of 2.59 at 1064 nm and can be integrated as an image sensor. This work demonstrates that VP/InSe and VP/Gr/InSe vdW heterostructures will be effective for promising integrated NIR optoelectronics.

6.
Epilepsy Behav ; 154: 109729, 2024 May.
Article in English | MEDLINE | ID: mdl-38513568

ABSTRACT

OBJECTIVE: This study aims to investigate the difference between epilepsy comorbid with and without cognitive dysfunction. METHOD: Participants were classified into patients with epilepsy comorbid cognitive dysfunction (PCCD) and patients with epilepsy without comorbid cognitive dysfunction (nPCCD). Microstate analysis was applied based on 20-channel electroencephalography (EEG) to detect the dynamic changes in the whole brain. The coverage, occurrence per second, duration, and transition probability were calculated. RESULT: The occurrence per second and the coverage of microstate B in the PCCD group were higher than that of the nPCCD group. Coverage in microstate D was lower in the PCCD group than in the nPCCD group. In addition, the PCCD group has a higher probability of A to B and B to A transitions and a lower probability of A to D and D to A transitions. CONCLUSION: Our research scrutinizes the disparities observed within EEG microstates among epilepsy patients both with and without comorbid cognitive dysfunction. SIGNIFICANCE: EEG microstate analysis offers a novel metric for assessing neuropsychiatric disorders and supplies evidence for investigating the mechanisms and the dynamic change of epilepsy comorbid cognitive dysfunction.


Subject(s)
Brain , Cognitive Dysfunction , Electroencephalography , Epilepsy , Humans , Male , Female , Epilepsy/complications , Epilepsy/physiopathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Adult , Brain/physiopathology , Young Adult , Middle Aged , Adolescent , Neuropsychological Tests
7.
J Inflamm Res ; 17: 1845-1855, 2024.
Article in English | MEDLINE | ID: mdl-38523685

ABSTRACT

Background: The simplified thrombo-inflammatory score (sTIPS) has recently emerged as a novel prognostic score. Hence, we investigated the prognostic value of sTIPS for predicting long-term mortality in patients with heart failure (HF). Methods: A total of 3741 patients were analyzed in this study. The sTIPS was calculated based on the white blood cell count (WBC) and the mean platelet volume to platelet count (MPV/PC) ratio at admission. The mean follow-up time was 22.75 months. Multivariable Cox regression analyses were used to investigate the associations between the sTIPS and all-cause mortality (ACM). Results: In the whole study population, multivariate Cox regression analysis showed that patients in both the sTIPS 2 and sTIPS 1 groups had significantly increased risk of ACM as compared with patients in the sTIPS 0 group (hazard ratio [HR]=1.706, 95% confidence interval [CI]: 1.405-2.072, P<0.001 and HR = 1.431, 95% CI 1.270-1.612, P<0.001). The same significant trend was observed in heart failure with preserved ejection fraction (HFpEF) patients (sTIPS1 vs sTIPS0: HR = 1.366, 95% CI 1.100-1.697, P = 0.005; sTIPS2 vs sTIPS0: HR = 1.995, 95% CI 1.460-2.725, P<0.001). However, only sTIPS 1 group had a significantly increased the risk of ACM compared to the sTIPS 0 group among patients with HFmrEF (sTIPS1 vs sTIPS0: HR = 1.648, 95% CI 1.238-2.194, P = 0.001) and HFrEF (sTIPS1 vs sTIPS0: HR = 1.322, 95% CI 1.021-1.712, P = 0.035). Conclusion: sTIPS is useful in predicting risk for long-term mortality in patients with HF.

8.
Front Cardiovasc Med ; 11: 1348263, 2024.
Article in English | MEDLINE | ID: mdl-38550515

ABSTRACT

Background: Diabetic kidney disease (DKD) had been proposed as a contributor in the pathogenesis of coronary artery disease (CAD). However, the relationship of DKD and the long-term adverse outcomes in patients with CAD after percutaneous coronary intervention (PCI) was still undiscovered. Methods: Approximately 892 patients with CAD enrolled from January 2012 to December 2016. The patients were divided into two groups, the DKD group (n = 341) and the None DKD group (n = 551). The primary outcome was major adverse cardiac events (MACE) after PCI. The average follow-up time was 1,897 ± 1,276 days. Results: Baseline data showed that some factors were significantly different between the two groups, including age, body mass index, gender (female), hypertension, smoking, stroke history, heart failure, duration of diabetic mellitus (DM), low-density lipoprotein cholesterol, urinary protein/creatinine ratio, serum creatinine, hemoglobin, platelet, antiplatelet, beta blocker, statin, antihypertensive drugs, and insulin (all p < 0.005). There were significant differences between the two groups in MACE, 40.3% vs. 52.2% (p = 0.001), and in cardiovascular death events and all-cause death events (5.6% vs. 20.5%, p < 0.001 and 4.4% vs. 13.5%, p < 0.001, respectively). In the DKD group, the risk of MACE was elevated to 141.9% [hazard ratio (HR) = 1.419, 95% confidence interval (CI): 1.164-1.730, p = 0.001] in the Cox univariable regression analyses; after adjusting co-variables, the Cox multivariable regression analyses demonstrated that DKD was an independent predictor for MACE (HR = 1.291, 95% CI: 1.027-1.624, p = 0.029) in patients with CAD after PCI, as well as in cardiovascular death events (HR = 2.148, 95% CI: 1.292-3.572, p = 0.003) and all-cause death events (HR = 2.229, 95% CI: 1.325-3.749, p = 0.003). Conclusion: This study suggests that DKD is an independent and novel predictor of long-term adverse outcomes in patients with CAD and DM who underwent PCI.

9.
Chem Sci ; 15(13): 4926-4937, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38550691

ABSTRACT

The effectiveness of an antibacterial agent is strongly influenced by its antibacterial mechanism, which, in turn, depends on the agent's topological structure. In the natural world, the nanoprotrusions on the surface of insect wings give them excellent antimicrobial properties through physical penetration while being compatible with host cells. Inspired by the novel nanostructure of insect wings, violet phosphorus (VP), a new member of the phosphorus family, has antibacterial potential due to the sub-nanoneedle on its edge. Here, we demonstrate that VP and its exfoliated product, violet phosphorene nanosheets (VPNSs), have superior antibacterial capability against pathogens via cell membrane penetration induced by peripheral sub-nanoneedles combined with oxidative stress. The results show that VPNSs can inactivate more than 99.9% of two common pathogens (Escherichia coli and Staphylococcus aureus) and more than 99.9% of two antibiotic-resistant bacteria (Escherichia coli pUC19 and methicillin-resistant Staphylococcus aureus), while showing almost no toxicity toward normal cells at a high concentration of 2.0 mg mL-1. Moreover, VPNSs can achieve effective treatment of induced skin wound infections and bacterial keratitis (BK) by Staphylococcus aureus and methicillin-resistant Staphylococcus aureus, respectively, showing promising potential for ocular and skin wound infection theragnostics.

11.
J Mater Chem B ; 12(14): 3392-3403, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38512335

ABSTRACT

In the face of the serious threat to human health and the economic burden caused by bacterial antibiotic resistance, 2D phosphorus nanomaterials have been widely used as antibacterial agents. Violet phosphorus nanosheets (VPNSs) are an exciting bandgap-adjustable 2D nanomaterial due to their good physicochemical properties, yet the study of VPNS-based antibiotics is still in its infancy. Here, a composite of gold nanorods (AuNRs) loaded onto VPNS platforms (VPNS/AuNR) is constructed to maximize the potential of VPNSs for antimicrobial applications. The loading with AuNRs not only enhances the photothermal performance via a localized surface plasmon resonance (LSPR) effect, but also enhances the light absorption capacity due to the narrowing of the band gap of the VPNSs, thus increasing the ROS generation capacity. The results demonstrate that VPNS/AuNR exhibits outstanding antibacterial properties and good biocompatibility. Attractively, VPNS/AuNR is then extensively tested for treating skin wound infections, suggesting promising in vivo antibacterial and wound-healing features. Our findings may open a novel direction to develop a versatile VPNS-based treatment platform, which can significantly boost the progress of VPNS exploration.


Subject(s)
Nanotubes , Phosphenes , Humans , Surface Plasmon Resonance , Nanotubes/chemistry , Anti-Bacterial Agents/pharmacology , Phosphorus
12.
Zhongguo Zhong Yao Za Zhi ; 49(2): 389-402, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403315

ABSTRACT

Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q/TOF-MS) was employed to examine the impact of Coptidis Rhizoma(CR) and its processed products on the metabolism in the rat model of oral ulcer due to excess heat and to compare the effectiveness of CR and its three products. Male SD rats were randomly allocated to the sham-operation(Sham), model(M, oral ulcer due to excess heat), CR, wine/Zingiberis Rhizoma Recens/Euodiae Fructus processed CR(wCR/zCR/eCR), and Huanglian Shangqing Tablets(HST) groups. Except the Sham group, the other groups were administrated with Codonopsis Radix-Astragali Radix decoction by gavage for two consecutive weeks. The anal temperature and water consumption of rats were monitored throughout the modeling period of excess heat. Following the completion of the modeling, oral ulcer was modeled with acetic acid. Hematoxylin-eosin(HE) staining was employed to observe the mucosal pathological changes in oral ulcer. A colorimetric assay was employed to determine the serum level of glutathione peroxidase(GSH-Px). Enzyme-linked immunosorbent assay(ELISA) was conducted to determine the levels of tumor necrosis factor-alpha(TNF-α), interleukin-6(IL-6), interleukin-1ß(IL-1ß), superoxide dismutase(SOD), and malondialdehyde(MDA) in the serum. The non-targeted metabolomics analysis based on UPLC-Q/TOF-MS was conducted on the serum samples. Metabolic profiles were then built, and the potential biomarkers were screened by principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA). The Mev software was used to establish a heat map and conduct cluster analysis on the quantitative results of the markers. The online databases including MBRole, KEGG, and MetaboAnalyst were used for pathway enrichment analysis and metabolic network building. The experimental results showed that the modeling led to pathological damage to the oral mucosa, elevated serum levels of TNF-α, IL-6, IL-1ß, and MDA, and lowered levels of SOD and GSH-Px in rats. The drug administration recovered all the indices to varying extents, and wCR exhibited the best performance. Non-targeted metabolomics identified 48 differential metabolites including 27 metabolites in the positive ion mode and 21 metabolites in the negative ion mode. Five enriched pathways were common, including glycerophospholipid metabolism, linoleic acid metabolism, and tyrosine metabolism. Conclusively, CR and its three processed products could alleviate the inflammation and oxidative stress injury in rats suffering from oral ulcers due to excess heat by regulating lipid and amino acid metabolism. Notably, wCR demonstrated the most significant therapeutic effect.


Subject(s)
Drugs, Chinese Herbal , Oral Ulcer , Rats , Male , Animals , Drugs, Chinese Herbal/pharmacology , Oral Ulcer/drug therapy , Interleukin-6 , Hot Temperature , Tumor Necrosis Factor-alpha , Rats, Sprague-Dawley , Metabolomics/methods , Chromatography, High Pressure Liquid , Superoxide Dismutase , Biomarkers
13.
Small ; : e2311841, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368255

ABSTRACT

Heterostructures are widely employed in photocatalysis to promote charge separation and photocatalytic activity. However, their benefits are limited by the linkages and contact environment at the interface. Herein, violet phosphorus quantum dots (VPQDs) and graphitic carbon nitride (g-C3 N4 ) are employed as model materials to form VPQDs/g-C3 N4 heterostructures by a simple ultrasonic pulse excitation method. The heterostructure contains strong interfacial P-N bonds that mitigate interfacial charge-separation issues. P-P bond breakage occurs in the distinctive cage-like [P9] VPQD units during longitudinal disruption, thereby exposing numerous active P sites that bond with N atoms in g-C3 N4 under ultrasonic pulse excitation. The atomic-level interfacial P-N bonds of the Z-scheme VPQDs/g-C3 N4 heterostructure serve as photogenerated charge-transfer channels for improved electron-hole separation efficiency. This results in excellent photocatalytic performance with a hydrogen evolution rate of 7.70 mmol g-1  h-1 (over 9.2 and 8.5 times greater than those of pure g-C3 N4 and VPQDs, respectively) and apparent quantum yield of 11.68% at 400 nm. Using atomic-level chemical bonds to promote interfacial charge separation in phosphorene heterostructures is a feasible and effective design strategy for photocatalytic water-splitting materials.

14.
Diabetol Metab Syndr ; 16(1): 2, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172998

ABSTRACT

BACKGROUND: Glycemic control for patients with diabetes in the surgical department is often unsatisfactory. Compounding this issue is the fact that conventional glucose management models are often inefficient and difficult to monitor over time. OBJECTIVE: To investigate the impact of inpatient glucose team-based management on glycemic control and hospital days in surgical patients with diabetes. METHODS: A retrospective analysis was conducted on 4156 patients with diabetes in the surgical department who received inpatient management of diabetes at a tertiary medical center from June 2020 to May 2022. Based on whether they received inpatient glucose team-based management, the surgical patients with diabetes were divided into two groups: the inpatient glucose team-based management (GM group, consisting of 1698 participants) and the conventional blood glucose management group (control group, consisting of 2458 participants). We compared the two groups in terms of glycemic control, hospital days, and health-care costs. Multiple logistic regression analysis was performed to build the hospital days prediction model and nomogram. Finally, the performance of the model was evaluated. RESULTS: The rate of glucose detection was higher in the GM group at 2 h postprandial (P < 0.01). The incidence of hypoglycemia and severe hyperglycemia, blood glucose attainment time, pre-operative preparation days, hospital days, and health-care costs were lower in the GM group than in the control group (P < 0.01). The linear regression model revealed that blood glucose attainment time, incidence of hypoglycemia (< 3.9mmol/L), preoperative preparation days, perioperative complications, and health-care costs were the factors influencing the hospital days (Total Point 83.4 points, mean hospital days 9.37 days). Receiver operating characteristic (ROC) curve analysis demonstrated that the nomogram had good accuracy for predicting hospital days (area under the ROC curve 0.83, 95% confidence interval [CI], 0.74 to 0.92). CONCLUSION: Inpatient glucose team-based management demonstrated significant improvements in glycemic control among surgical patients with diabetes, resulting in reduced hospital days and associated costs. The developed nomogram also exhibited promising potential in predicting hospital days, offering valuable clinical applications.

15.
Phys Chem Chem Phys ; 26(5): 3880-3889, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38226853

ABSTRACT

The development of efficient electrocatalysts for the hydrogen evolution reaction (HER) holds immense importance in the context of large-scale hydrogen production from water. Nevertheless, the practical application of such catalysts still relies on precious platinum-based materials. There is a pressing need to design high-performing, non-precious metal electrocatalysts capable of generating hydrogen at substantial current levels. We report here a stable monolith catalyst of Te-doped-WSe2 directly supported by a highly conductive W mesh. This catalyst demonstrates outstanding electrocatalytic performance and stability in acidic electrolytes, especially under high current conditions, surpassing the capabilities of commercial 5% Pt/C catalysts. Specifically, at current densities of 10 and 1200 mA cm-2, it exhibits a minimal overpotential of 79 and 232 mV, along with a small Tafel slope of 55 mV dec-1, respectively. The remarkable catalytic activity of Te-WSe2 can be attributed to the exceptional electron transfer facilitated by the stable monolithic structure, as well as the abundant and efficient active sites in the material. In addition, density functional theory calculations further indicate that Te doping adjusts H atom adsorption on various positions of WSe2, making it closer to thermal neutrality compared to the original material. This study presents an innovative approach to develop cost-effective HER electrocatalysts that perform optimally under high current density conditions.

16.
J Org Chem ; 89(1): 605-616, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38096545

ABSTRACT

Heterobimetallic complexes have recently garnered considerable attention in organic synthesis owing to their high activity and selectivity, which surpass those of monometallic complexes. In this study, the detailed mechanisms of terminal alkyne dimerization activated by the heterobimetallic Zr/Co complex, as well as the different stereoselectivities of Me3SiC≡CH and PhC≡CH dimerization, were investigated and elucidated by using density functional theory calculations. After excluding the three-molecule reaction and outer-sphere mechanisms, the inner-sphere mechanism was determined as the most optimal process. The inner-sphere mechanism involves four processes: THF dissociation and coordination of the first alkyne; ligand migration and C-H activation; N2 dissociation and insertion of the second alkyne; and reductive elimination. The stereoselectivity between the E-/Z- and gem-isomers is determined by the C-C coupling mode of the two alkynes and that of the E- and Z-isomers is determined by the sequence of the C-C coupling and hydrogen migration in the reductive elimination process. Me3SiC≡CH dimerization yields only an E-isomer owing to the large differences in the distortion and interaction energies, whereas PhC≡CH dimerization produces an E-, Z-, and gem-isomers owing to the reduced interaction energy differences.

17.
Nat Commun ; 14(1): 8163, 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38071210

ABSTRACT

Cultured meat production has emerged as a breakthrough technology for the global food industry with the potential to reduce challenges associated with environmental sustainability, global public health, animal welfare, and competition for food between humans and animals. The muscle stem cell lines currently used for cultured meat cannot be passaged in vitro for extended periods of time. Here, we develop a directional differentiation system of porcine pre-gastrulation epiblast stem cells (pgEpiSCs) with stable cellular features and achieve serum-free myogenic differentiation of the pgEpiSCs. We show that the pgEpiSCs-derived skeletal muscle progenitor cells and skeletal muscle fibers have typical muscle cell characteristics and display skeletal muscle transcriptional features during myogenic differentiation. Importantly, we establish a three-dimensional differentiation system for shaping cultured tissue by screening plant-based edible scaffolds of non-animal origin, followed by the generation of pgEpiSCs-derived cultured meat. These advances provide a technical approach for the development of cultured meat.


Subject(s)
Muscle, Skeletal , Stem Cells , Humans , Animals , Swine , Muscle, Skeletal/metabolism , Muscle Fibers, Skeletal/metabolism , Cell Differentiation , Meat , Cells, Cultured
18.
Nano Lett ; 23(23): 10821-10831, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38050812

ABSTRACT

Anisotropic optoelectronics based on low-symmetry two-dimensional (2D) materials hold immense potential for enabling multidimensional visual perception with improved miniaturization and integration capabilities, which has attracted extensive interest in optical communication, high-gain photoswitching circuits, and polarization imaging fields. However, the reported in-plane anisotropic photocurrent and polarized dichroic ratios are limited, hindering the achievement of high-performance anisotropic optoelectronics. In this study, we introduce novel low-symmetry violet phosphorus (VP) with a unique tubular cross-linked structure into this realm, and the corresponding anisotropic optical and optoelectronic properties are investigated both experimentally and theoretically for the first time. Remarkably, our prepared VP-based van der Waals phototransistor exhibits significant optoelectronic anisotropies with a giant in-plane anisotropic photocurrent ratio exceeding 10 and a comparable polarized dichroic ratio of 2.16, which is superior to those of most reported 2D counterparts. Our findings establish VP as an exceptional candidate for anisotropic optoelectronics, paving the way for future multifunctional applications.

19.
Front Nutr ; 10: 1304521, 2023.
Article in English | MEDLINE | ID: mdl-38156282

ABSTRACT

Background: The association between waist-to-height ratio (WHtR) with hypertension has not been adequately explained, so in this study we sought to clarify the predictive role of WHtR on the incidence of hypertension as well as the potential nonlinear associations in the general population. Methods: In this large prospective cohort study, a total of 4,458 individuals from the China Health and Nutrition Survey (CHNS) were included in the analysis. Multivariate Cox regression analyses, subgroup analyses, receiver operator characteristic (ROC) and restricted cubic spline (RCS) analyses were used to examine the association of WHtR with the risk of new-onset hypertension. Results: Hypertension occurred in 32.8% of participants during the maximum six-year follow-up period. Compared with the group with lower WHtR, the group with higher WHtR had a higher incidence of hypertension (p < 0.001). Multivariate Cox regression analysis showed that the risk of hypertension was 1.45 times higher in the high WHtR group than in the low WHtR group, and that the risk of hypertension increased by 30.4% for every 0.1 unit increase in WHtR (p < 0.001). Subgroup analyses also validated the stratified associations between WHtR and the risk of new-onset hypertension in most subgroups (p < 0.05). ROC analyses also revealed that WHtR was superior to body mass index in predicting new-onset hypertension (AUC: 0.626 vs. 0.607, p = 0.009). Further RCS analysis detected a nonlinear association between WHtR and risk of new-onset hypertension (P for nonlinearity <0.001). Conclusion: WHtR was nonlinearly associated with the risk of new-onset hypertension in the general population.

20.
Immun Inflamm Dis ; 11(11): e1050, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38018586

ABSTRACT

OBJECTIVE: The aim of this study was to elucidate the mechanism of beraprost sodium (BPS) in the intervention of myocardial fibrosis after myocardial infarction (MI) through glycogen synthase kinase-3ß (GSK-3ß) and to provide new ideas for intervention in myocardial fibrosis. MATERIALS AND METHODS: MI model rats given BPS and cardiac fibroblasts (CFs) treated with BPS and TGF-ß. HE staining and Masson staining were used to detect the pathological changes of myocardial tissue. Fibrotic markers were detected by immunohistochemical staining. The expressions of GSK-3ß, cAMP response element binding protein (CREB), and p-CREB were analyzed by qPCR and western blot analysis. EDU staining was used to detect the proliferation of CFs. The promoter activity of GSK-3ß was detected by luciferase assay. Chromatin immunoprecipitation assay was used to detect the binding levels of GSK-3ß promoter and Y-box binding protein 1 (YBX1). The levels of intracellular cyclic adenosine monophosphate (cAMP) were analyzed by enzyme-linked immunosorbent assay (ELISA). RESULTS: After operation, BPS improved myocardial fibrosis and upregulated GSK-3ß protein expression in male SD rats. BPS can down-regulate α-smooth muscle actin (α-SMA) level and up-regulate GSK-3ß protein expression in CFs after TGF-ß stimulation. Furthermore, GSK-3ß knockdown can reverse the effect of BPS on TGF-ß-activated CFs, enhance α-SMA expression, and promote the proliferation of CFs. BPS could regulate GSK-3ß expression by promoting the binding of GSK-3ß promoter to YBX1. BPS induced upregulation of p-CREB and cAMP, resulting in reduced fibrosis, which was reversed by the knockdown of GSK-3ß or prostaglandin receptor (IPR) antagonists. CONCLUSION: BPS treatment increased the binding of YBX1 to the GSK-3ß promoter, and GSK-3ß protein expression was upregulated, which further caused the upregulation of p-CREB and cAMP, and finally inhibited myocardial fibrosis.


Subject(s)
Myocardial Infarction , Rats , Animals , Male , Glycogen Synthase Kinase 3 beta , Rats, Sprague-Dawley , Myocardial Infarction/drug therapy , Transforming Growth Factor beta , Fibrosis
SELECTION OF CITATIONS
SEARCH DETAIL
...